Skip to Content
MilliporeSigma
  • Does the ion mobility resolving power as provided by commercially available ion mobility quadrupole time-of-flight mass spectrometry instruments permit the unambiguous identification of small molecules in complex matrices?

Does the ion mobility resolving power as provided by commercially available ion mobility quadrupole time-of-flight mass spectrometry instruments permit the unambiguous identification of small molecules in complex matrices?

Analytica chimica acta (2020-03-24)
A Kaufmann, P Butcher, K Maden, S Walker, M Widmer
ABSTRACT

Quadrupole based mass spectrometry based detection has experienced enormous improvements in terms of sensitivity over the last centuries. This development has not been equally matched with improvements in selectivity. Hence, the use of unit mass based MS/MS transitions or high resolution (HRMS) based extracted ion chromatograms is gradually becoming insufficient in the field of high sensitivity multi-residue analysis (e.g. pesticides in food). As a consequence, commercial instruments hyphenating ion mobility (IMS) with low or high resolution mass spectrometry based detection have appeared. The use of such an additional (frequently claimed to be orthogonal) dimension is intended to increase selectivity. In addition, IMS derived collision cross section (CCS) has been proposed to be used as an additional identification point for the unambiguous identification of trace compounds in complex matrices. It is the topic of this paper to investigate the benefit of using such a hyphenated technique for trace analysis of small molecules in complex matrices. The potential of CCS to serve as additional identification point has been critically evaluated. Discussed are the effect of CCS data on false detects and missing detects of analytes present at trace levels. This involves the investigation of the physical resolving power provided by HRMS, IMS and chromatography as well as the correlation among these parameters (orthogonality). It is the conclusion that currently commercially available travelling wave and linear drift tube based IMS devices with a resolving power of up to 50 permit a reduction of false detects, yet this comes at the price of a higher likelihood of missing detects. The reduction of missing detects and the use of CCS as potential confirmatory information would require IMS resolving powers above 100.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetraoctylammonium chloride, ≥97.0% (AT)
Sigma-Aldrich
Tetrapropylammonium chloride, 98%
Sigma-Aldrich
Tetrahexylammonium chloride, 96%