Skip to Content
MilliporeSigma
  • Polymer Inclusion Membranes (PIMs) Doped with Alkylimidazole and their Application in the Separation of Non-Ferrous Metal Ions.

Polymer Inclusion Membranes (PIMs) Doped with Alkylimidazole and their Application in the Separation of Non-Ferrous Metal Ions.

Polymers (2019-11-02)
Elzbieta Radzyminska-Lenarcik, Malgorzata Ulewicz
ABSTRACT

The study involved the transport of zinc(II), cadmium(II), and nickel(II) ions from acidic aqueous solutions using polymer inclusion membranes (PIMs). PIMs consisted of cellulose triacetate (CTA) as a support; o-nitrophenyl pentyl ether (o-NPPE) as a plasticizer; and 1-octylimidazole (1), 1-octyl-2-methylimidazole (2), 1-octyl-4-methylimidazole (3), or 1-octyl-2,4-dimethylimidazole (4) as ion carriers. The membranes were characterized by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results show that Zn(II) and Cd(II) are effectively transported across PIMs, while Ni(II) transport is not effective. The rate of transport of metal ions across PIMs is determined by the diffusion rate of the M(II)-carrier complex across the membrane. The best result achieved for Zn(II) removal after 24 h was 95.5% for the ternary Zn(II)-Cd(II)-Ni(II) solution for PIM doped (4). For this membrane, the separation coefficients for Zn(II)/Cd(II), Zn(II)/Ni(II), and Cd(II)/Ni(II) were 2.8, 104.5, and 23.5, respectively. Additionally, the influence of basicity and structure of carrier molecules on transport kinetics was discussed.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-(4-Hydroxy-3-methoxyphenyl)propionic acid, ≥96.0% (T)