Skip to Content
MilliporeSigma
  • Analysis of Thisbe and Pyramus functional domains reveals evidence for cleavage of Drosophila FGFs.

Analysis of Thisbe and Pyramus functional domains reveals evidence for cleavage of Drosophila FGFs.

BMC developmental biology (2010-08-07)
Sarah Tulin, Angelike Stathopoulos
ABSTRACT

As important regulators of developmental and adult processes in metazoans, Fibroblast Growth Factor (FGF) proteins are potent signaling molecules whose activities must be tightly regulated. FGFs are known to play diverse roles in many processes, including mesoderm induction, branching morphogenesis, organ formation, wound healing and malignant transformation; yet much more remains to be learned about the mechanisms of regulation used to control FGF activity. In this work, we conducted an analysis of the functional domains of two Drosophila proteins, Thisbe (Ths) and Pyramus (Pyr), which share homology with the FGF8 subfamily of ligands in vertebrates. Ths and Pyr proteins are secreted from Drosophila Schneider cells (S2) as smaller N-terminal fragments presumably as a result of intracellular proteolytic cleavage. Cleaved forms of Ths and Pyr can be detected in embryonic extracts as well. The FGF-domain is contained within the secreted ligand portion, and this domain alone is capable of functioning in the embryo when ectopically expressed. Through targeted ectopic expression experiments in which we assay the ability of full-length, truncated, and chimeric proteins to support cell differentiation, we find evidence that (1) the C-terminal domain of Pyr is retained inside the cell and does not seem to be required for receptor activation and (2) the C-terminal domain of Ths is secreted and, while also not required for receptor activation, this domain does plays a role in limiting the activity of Ths when present. We propose that differential protein processing may account for the previously observed inequalities in signaling capabilities between Ths and Pyr. While the regulatory mechanisms are likely complex, studies such as ours conducted in a tractable model system may be able to provide insights into how ligand processing regulates growth factor activity.

MATERIALS
Product Number
Brand
Product Description

Roche
Anti-HA-Biotin, High Affinity (3F10), from rat IgG1