Skip to Content
MilliporeSigma
  • A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.

A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.

Advanced healthcare materials (2019-06-14)
Isabel Calejo, Raquel Costa-Almeida, Rui L Reis, Manuela E Gomes
ABSTRACT

Tendon-to-bone interfaces exhibit a hierarchical multitissue transition. To replicate the progression from mineralized to nonmineralized tissue, a novel 3D fibrous scaffold is fabricated with spatial control over mineral distribution and cellular alignment. For this purpose, wet-spun continuous microfibers are produced using polycaprolactone (PCL)/ gelatin and PCL/gelatin/hydroxyapatite nano-to-microparticles (HAp). Higher extrusion rates result in aligned PCL/gelatin microfibers while, in the case of PCL/gelatin/HAp, the presence of minerals leads to a less organized structure. Biological performance using human adipose-derived stem cells (hASCs) demonstrates that topography of PCL/gelatin microfibers can induce cytoskeleton elongation, resembling native tenogenic organization. Matrix mineralization on PCL/gelatin/HAp wet-spun composite microfibers suggest the production of an osteogenic-like matrix, without external addition of osteogenic medium supplementation. As proof of concept, a 3D gradient structure is produced by assembling PCL/gelatin and PCL/gelatin/HAp microfibers, resulting in a fibrous scaffold with a continuous topographical and compositional gradient. Overall, the feasibility of wet-spinning for the generation of continuously aligned and textured microfibers is demonsrated, which can be further assembled into more complex 3D gradient structures to mimic characteristic features of tendon-to-bone interfaces.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Collagen Type II Antibody, clone COLL-II, ascites fluid, clone COLL-II, Chemicon®