Pular para o conteúdo
Merck

Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates.

EvoDevo (2015-07-15)
Alessandro Di Maio, Leah Setar, Stefano Tiozzo, Anthony W De Tomaso
RESUMO

Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development.

MATERIAIS
Número do produto
Marca
Descrição do produto

Sigma-Aldrich
Ethyl methanesulfonate, liquid
Sigma-Aldrich
Lithium chloride, ReagentPlus®, 99%
Sigma-Aldrich
Ethyl 3-aminobenzoate methanesulfonate, 98%
Sigma-Aldrich
Lithium-7Li chloride, 99 atom % 7Li, 99% (CP)
Sigma-Aldrich
Lithium chloride, BioXtra, ≥99.0% (titration)