Skip to Content
Merck
  • Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors.

Crystal structures, binding interactions, and ADME evaluation of brain penetrant N-substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors.

European journal of medicinal chemistry (2017-01-21)
Nikolay T Tzvetkov, Hans-Georg Stammler, Beate Neumann, Silvia Hristova, Liudmil Antonov, Marcus Gastreich
ABSTRACT

The pharmacological and physicochemical analysis of structurally optimized N-alkyl-substituted indazole-5-carboxamides, developed as potential drug and radioligand candidates for the treatment and diagnosis of Parkinson's disease (PD) and other neurological disorders, is reported. Recent efforts have been focused on the development of subnanomolar potent, selective MAO-B (N1-alkyl-substituted compounds 12a-14a and 15) and dual active MAO-A/B (N2-methylated compounds 12b-14b) inhibitors with nanomolar potency towards MAO-B and moderately active against MAO-A enzyme, respectively. The most promising drug-like derivatives in both series were N-(3-chloro-4-fluorophenyl)-1-methyl-1H-indazole-5-carboxamide (13a, NTZ-1441, IC

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1H-Indazole-5-carboxylic acid, 97%