Skip to Content
Merck
  • Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

PloS one (2014-06-24)
Olgica Trenchevska, David A Phillips, Randall W Nelson, Dobrin Nedelkov
ABSTRACT

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Supelco
trans-Sinapic acid, analytical standard
Sigma-Aldrich
β-Lactoglobulin B from bovine milk, ≥90% (PAGE)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Retinol, BioXtra, ≥97.5% (HPLC), ~3100 U/mg
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Retinol, ≥95.0% (HPLC), ~2700 U/mg
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
1-Methyl-2-pyrrolidinone, anhydrous, 99.5%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Cystatin C human, recombinant, expressed in HEK 293 cells, HumanKine®, suitable for cell culture
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Retinol, synthetic, ≥95% (HPLC), (Powder or Powder with Lumps)
Supelco
1-Methyl-2-pyrrolidinone, analytical standard