Skip to Content
Merck

The orexinergic neurons receive synaptic input from C1 cells in rats.

The Journal of comparative neurology (2014-07-06)
Genrieta Bochorishvili, Thanh Nguyen, Melissa B Coates, Kenneth E Viar, Ruth L Stornetta, Patrice G Guyenet
ABSTRACT

The C1 cells, located in the rostral ventrolateral medulla (RVLM), are activated by pain, hypoxia, hypoglycemia, infection, and hypotension and elicit cardiorespiratory stimulation, adrenaline and adrenocorticotropic hormone (ACTH) release, and arousal. The orexin neurons contribute to the autonomic responses to acute psychological stress. Here, using an anatomical approach, we consider whether the orexin neurons could also be contributing to the autonomic effects elicited by C1 neuron activation. Phenylethanolamine N-methyl transferase-immunoreactive (PNMT-ir) axons were detected among orexin-ir somata, and close appositions between PNMT-ir axonal varicosities and orexin-ir profiles were observed. The existence of synapses between PNMT-ir boutons labeled with diaminobenzidine and orexinergic neurons labeled with immunogold was confirmed by electron microscopy. We labeled RVLM neurons with a lentiviral vector that expresses the fusion protein ChR2-mCherry under the control of the catecholaminergic neuron-selective promoter PRSx8 and obtained light and ultrastructural evidence that these neurons innervate the orexin cells. By using a Cre-dependent adeno-associated vector and TH-Cre rats, we confirmed that the projection from RVLM catecholaminergic neurons to the orexinergic neurons originates predominantly from PNMT-ir catecholaminergic (i.e., C1 cells). The C1 neurons were found to establish predominantly asymmetric synapses with orexin-ir cell bodies or dendrites. These synapses were packed with small clear vesicles and also contained dense-core vesicles. In summary, the orexin neurons are among the hypothalamic neurons contacted and presumably excited by the C1 cells. The C1-orexin neuronal connection is probably one of several suprabulbar pathways through which the C1 neurons activate breathing and the circulation, raise blood glucose, and facilitate arousal from sleep.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Osmium tetroxide solution, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Sodium borohydride, ReagentPlus®, 99%
Sigma-Aldrich
Sodium borohydride, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
Sodium borohydride, granular, 99.99% trace metals basis
Sigma-Aldrich
Sodium borohydride, caplets (18 × 10 × 8 mm), 98%
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%
Sigma-Aldrich
Sodium borohydride, granular, 10-40 mesh, 98%
Sigma-Aldrich
Osmium tetroxide solution, 2.5 wt. % in tert-butanol
Sigma-Aldrich
Osmium tetroxide solution, 4 wt. % in H2O
Sigma-Aldrich
Osmium tetroxide, Sealed ampule.
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Supelco
(±)-Propylene oxide, analytical standard
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
VenPure® SF, powder
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Osmium tetroxide, ACS reagent, ≥98.0%
Sigma-Aldrich
Osmium tetroxide, ReagentPlus®, 99.8%
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Anti-Tyrosine Hydroxylase Antibody, Chemicon®, from sheep