Skip to Content
Merck
  • The retinoblastoma tumor suppressor promotes efficient human cytomegalovirus lytic replication.

The retinoblastoma tumor suppressor promotes efficient human cytomegalovirus lytic replication.

Journal of virology (2015-02-20)
Halena R VanDeusen, Robert F Kalejta
ABSTRACT

The retinoblastoma (Rb) tumor suppressor controls cell cycle, DNA damage, apoptotic, and metabolic pathways. DNA tumor virus oncoproteins reduce Rb function by either inducing Rb degradation or physically disrupting complexes between Rb and its myriad binding proteins. Human cytomegalovirus (HCMV), a betaherpesvirus being investigated for potential roles in human cancers, encodes multiple lytic-phase proteins that inactivate Rb in distinct ways, leading to the hypothesis that reduced Rb levels and/or activity would benefit HCMV lytic infection. Paradoxically, we found that Rb knockdown prior to infection, whether transient or constitutive, impaired HCMV lytic infection at multiple stages, notably viral DNA replication, late protein expression, and infectious virion production. The existence of differentially modified forms of Rb, the temporally and functionally distinct means by which HCMV proteins interact with Rb, and the necessity of Rb for efficient HCMV lytic replication combine to highlight the complex relationship between the virus and this critical tumor suppressor. Initial work examining viral protein modulation of cell cycle progression and oncogenic transformation revealed that these proteins inactivated the function of cellular tumor suppressor proteins. However, subsequent work, including experiments described here using human cytomegalovirus, demonstrate a more nuanced interaction that includes the necessity of cellular tumor suppressors for efficient viral replication. Understanding the positive impacts that cellular tumor suppressors have on viral infections may reveal new activities of these well-studied yet incompletely understood proteins. The basis for oncolytic viral therapy is the selective replication of viruses in transformed cells in which tumor suppressor function may be compromised. Understanding how tumor suppressors support viral infections may allow for the generation of modified oncolytic viruses with greater selective tumor cell replication and killing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
RB Active human, recombinant, expressed in E. coli, ≥80% (SDS-PAGE)
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O