Skip to Content
Merck
  • Effect of dipole potential variations on the surface charge potential of lipid membranes.

Effect of dipole potential variations on the surface charge potential of lipid membranes.

The journal of physical chemistry. B (2009-02-06)
F Lairion, E A Disalvo
ABSTRACT

When the dipole potential of dimyristoylphosphatidylcholine (DMPC) monolayers was decreased, either by the insertion of phloretin or by the elimination of carbonyl groups at the interphase, the surface charge potential was displaced to lower negative values. At low ionic strength, the decrease of the negative charge density can be ascribed to a different exposure of the phosphate to water, as there is a good correlation to an increase in the area per lipid. At high ionic strength, the magnitude of the changes in the zeta potential produced by the effects on the dipole potential was found to be dependent on the type of anions present in the subphase. Differences between Cl- and ClO4- were ascribed to the adsorption of anions according to their different hydrations and polarizabilities. The influence of a low dipole potential on the anion adsorption can be ascribed to a less positive image charge at the membrane interior, resulting from an increase in the hydrocarbon core permittivity. This is congruent with the neutralization of interfacial dipoles and the area increase, as well as with the decrease in packing of the hydrocarbon groups. Phloretin did not cause changes in the dipole potential of dimyristoylphosphatidylethanolamine (DMPE), and in consequence, no effects on the zeta potential were measured. It is concluded that changes in the inner water/hydrocarbon plane affect the electrostatic potential measured in the outer plane of the polar headgroup region.