Skip to Content
Merck
  • Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo.

Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo.

Bioconjugate chemistry (2017-09-25)
Jugal P Dhandhukia, Pu Shi, Santosh Peddi, Zhe Li, Suhaas Aluri, Yaping Ju, Dab Brill, Wan Wang, Siti M Janib, Yi-An Lin, Shuanglong Liu, Honggang Cui, J Andrew MacKay
ABSTRACT

Recombinant protein-polymer scaffolds such as elastin-like polypeptides (ELPs) offer drug-delivery opportunities including biocompatibility, monodispersity, and multifunctionality. We recently reported that the fusion of FK-506 binding protein 12 (FKBP) to an ELP nanoparticle (FSI) increases rapamycin (Rapa) solubility, suppresses tumor growth in breast cancer xenografts, and reduces side effects observed with free-drug controls. This new report significantly advances this carrier strategy by demonstrating the coassembly of two different ELP diblock copolymers containing drug-loading and tumor-targeting domains. A new ELP nanoparticle (ISR) was synthesized that includes the canonical integrin-targeting ligand (Arg-Gly-Asp, RGD). FSI and ISR mixed in a 1:1 molar ratio coassemble into bifunctional nanoparticles containing both the FKBP domain for Rapa loading and the RGD ligand for integrin binding. Coassembled nanoparticles were evaluated for bifunctionality by performing in vitro cell-binding and drug-retention assays and in vivo MDA-MB-468 breast tumor regression and tumor-accumulation studies. The bifunctional nanoparticle demonstrated superior cell target binding and similar drug retention to FSI; however, it enhanced the formulation potency, such that tumor growth was suppressed at a 3-fold lower dose compared to an untargeted FSI-Rapa control. This data suggests that ELP-mediated scaffolds are useful tools for generating multifunctional nanomedicines with potential activity in cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
BLR(DE3) Competent Cells - Novagen, BLR is a recA derivative of BL21 that improves plasmid monomer yields and may help stabilize target plasmids containing repetitive sequences.