Skip to Content
Merck
  • Set2-dependent K36 methylation is regulated by novel intratail interactions within H3.

Set2-dependent K36 methylation is regulated by novel intratail interactions within H3.

Molecular and cellular biology (2009-10-14)
James N Psathas, Suting Zheng, Song Tan, Joseph C Reese
ABSTRACT

Posttranslational modifications to histones have been studied extensively, but the requirement for the residues within the tails for different stages of transcription is less clear. Using RNR3 as a model, we found that the residues within the N terminus of H3 are predominantly required for steps after transcription initiation and chromatin remodeling. Specifically, deleting as few as 20 amino acids, or substituting glutamines for lysines in the tail, greatly impaired K36 methylation by Set2. The mutations to the tail described here preserve the residues predicted to fill the active site of Set2, and the deletion mimics the recently described cleavage of the H3 tail that occurs during gene activation. Importantly, maintaining the charge of the unmodified tail by arginine substitutions preserves Set2 function in vivo. The H3 tail is dispensable for Set2 recruitment to genes but is required for the catalytic activity of Set2 in vitro. We propose that Set2 activity is controlled by novel intratail interactions which can be influenced by modifications and changes to the structure of the H3 tail to control the dynamics and localization of methylation during elongation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-acetyl-Histone H3 (Lys36) Antibody, serum, Upstate®
Sigma-Aldrich
Anti-dimethyl-Histone H3 (Lys79) Antibody, clone NL59, rabbit monoclonal, culture supernatant, clone NL59, Upstate®
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)