Skip to Content
Merck
  • Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis.

Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis.

Journal of translational medicine (2015-07-18)
Hogyoung Kim, Abdelmetalab Tarhuni, Zakaria Y Abd Elmageed, A Hamid Boulares
ABSTRACT

We and others have extensively investigated the role of PARP-1 in cell growth and demise in response to pathophysiological cues. Most of the clinical trials on PARP inhibitors are targeting primarily estrogen receptor (ER) negative cancers with BRCA-deficiency. It is surprising that the role of the enzyme has yet to be investigated in ER-mediated cell growth. It is noteworthy that ER is expressed in the majority of breast cancers. We recently showed that the scaffolding protein PDZK1 is critical for 17β-estradiol (E2)-induced growth of breast cancer cells. We demonstrated that E2-induced PDZK1 expression is indirectly regulated by ER and requires IGF-1 receptor (IGF-1R). The breast cancer cell lines MCF-7 and BT474 were used as ER(+) cell culture models. Thieno[2,3-c]isoquinolin-5-one (TIQ-A) and olaparib (AZD2281) were used as potent inhibitors of PARP. PARP-1 knockdown by shRNA was used to show specificity of the effects to PARP-1. In this study, we aimed to determine the effect of PARP inhibition on estrogen-induced growth of breast cancer cells and examine whether the potential effect is linked to PDZK1 and IGF-1R expression. Our results show that PARP inhibition pharmacologically by TIQ-A or olaparib or by PARP-1 knockdown blocked E2-dependent growth of MCF-7 cells. Such inhibitory effect was also observed in olaparib-treated BT474 cells. The effect of PARP inhibition on cell growth coincided with an efficient reduction in E2-induced PDZK1 expression. This effect was accompanied by a similar decrease in the cell cycle protein cyclin D1. PARP appeared to regulate E2-induced PDZK1 at the mRNA level. Such regulation may be linked to a modulation of IGF-1R as PARP inhibition pharmacologically or by PARP-1 knockdown efficiently reduced E2-induced expression of the receptor at the protein and mRNA levels. Overall, our results show for the first time that PARP regulates E2-mediated cell growth by controlling the ER/IGF-1R/PDZK1 axis. These findings suggest that the relationship between ER, PDZK1, and IGF-1R may be perturbed by blocking PARP function and that PARP inhibitors may be considered in clinical trials on ER(+) cancers.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human PARP1