Skip to Content
Merck
  • Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts.

Curcumin induces apoptosis and inhibits growth of orthotopic human non-small cell lung cancer xenografts.

The Journal of nutritional biochemistry (2014-05-20)
Shahar Lev-Ari, Alex Starr, Sara Katzburg, Liron Berkovich, Adam Rimmon, Rami Ben-Yosef, Akiva Vexler, Ilan Ron, Gideon Earon
ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality. Curcumin is involved in various biological pathways leading to inhibition of NSCLC growth. The purpose of this study was to evaluate the effect of curcumin on expression of nuclear factor κB-related proteins in vitro and in vivo and on growth and metastasis in an intralung tumor mouse model. H1975 NSCLC cells were treated with curcumin (0-50 μM) alone, or combined with gemcitabine or cisplatin. The effects of curcumin were evaluated in cell cultures and in vivo, using ectopic and orthotopic lung tumor mouse models. Twenty mice were randomly selected into two equal groups, one that received AIN-076 control diet and one that received the same food but with the addition of 0.6% curcumin 14 days prior to cell implantation and until the end of the experiment. To generate orthotopic tumor, lung cancer cells in Matrigel were injected percutaneously into the left lung of CD-1 nude mice. Western blot analysis showed that the expressions of IkB, nuclear p65, cyclooxygenase 2 (COX-2) and p-ERK1/2 were down-regulated by curcumin in vitro. Curcumin potentiated the gemcitabine- or cisplatin-mediated antitumor effects. Curcumin reduced COX-2 expression in subcutaneous tumors in vivo and caused a 36% decrease in weight of intralung tumors (P=.048) accompanied by a significant survival rate increase (hazard ratio=2.728, P=.036). Curcumin inhibition of COX-2, p65 expression and ERK1/2 activity in NSCLC cells was associated with decreased survival and increased induction of apoptosis. Curcumin significantly reduced tumor growth of orthotopic human NSCLC xenografts and increased survival of treated athymic mice. To evaluate the role of curcumin in chemoprevention and treatment of NSCLC, further clinical trials are required.

MATERIALS
Product Number
Brand
Product Description

USP
Curcumin, United States Pharmacopeia (USP) Reference Standard
Curcumin, primary reference standard
Supelco
Curcumin, matrix substance for MALDI-MS, ≥99.5% (HPLC)
Supelco
Curcumin, analytical standard
Sigma-Aldrich
Curcumin, ≥94% (curcuminoid content), ≥80% (Curcumin)
Sigma-Aldrich
Curcumin, from Curcuma longa (Turmeric), powder