Skip to Content
Merck
  • Oxidative Stress-Induced Pentraxin 3 Expression Human Retinal Pigment Epithelial Cells is Involved in the Pathogenesis of Age-Related Macular Degeneration.

Oxidative Stress-Induced Pentraxin 3 Expression Human Retinal Pigment Epithelial Cells is Involved in the Pathogenesis of Age-Related Macular Degeneration.

International journal of molecular sciences (2019-12-05)
Narae Hwang, Min-Young Kwon, Je Moon Woo, Su Wol Chung
ABSTRACT

: (1) Background: Age-related macular degeneration (AMD) is closely related with retinal pigment epithelial (RPE) cell dysfunction. Although the exact pathogenesis of AMD remains largely unknown, oxidative stress-induced RPE damage is believed to be one of the primary causes. We investigated the molecular mechanisms of pentraxin 3 (PTX3) expression and its biological functions during oxidative injury. (2) Methods: Using enzyme-linked immunosorbent assays and real-time reverse transcription-polymerase chain reaction, we analyzed mRNA and protein levels of PTX3 in the presence or absence of oxidative stress inducer, sodium iodate (NaIO3), in primary human H-RPE and ARPE-19 cells. Furthermore, we assessed cell death, antioxidant enzyme expression, and AMD-associated gene expression to determine the biological functions of PTX3 under oxidative stress. (3) Results: NaIO3 increased PTX3 expression, in a dose- and time-dependent manner, in H-RPE and ARPE-19 cells. We found phosphorylated Akt, a downstream target of the PI3 kinase pathway, phosphor- mitogen-activated protein kinase kinase 1/2 (ERK), and intracellular reactive oxygen species (ROS) were predominantly induced by NaIO3. NaIO3-induced PTX3 expression was decreased in the presence of phosphoinositide 3 (PI3) kinase inhibitors, ERK inhibitors, and ROS scavengers. Furthermore, NaIO3 enhanced mRNA expression of antioxidant enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), catalase(CAT), and glutathione S-reductase (GSR) in the control shRNA expressing RPE cells, but not in hPTX3 shRNA expressing RPE cells. Interestingly, NaIO3 did not induce mRNA expression of AMD marker genes, such as complement factor I (CFI), complement factor H (CFH), apolipoprotein E (APOE), and toll-like receptor 4 (TLR4) in hPTX3 shRNA expressing RPE cells. 4) Conclusions: These results suggest that PTX3 accelerates RPE cell death and might be involved in AMD development in the presence of oxidative stress.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
Sodium iodate, puriss. p.a., ≥99.5% (RT)
Sigma-Aldrich
Mouse Ptx3 / Pentraxin-related Protein PTX3 ELISA Kit
Sigma-Aldrich
MISSION® esiRNA, targeting human PTX3
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder