Skip to Content
Merck
  • Cytochrome P450 2C8 ω3-long-chain polyunsaturated fatty acid metabolites increase mouse retinal pathologic neovascularization--brief report.

Cytochrome P450 2C8 ω3-long-chain polyunsaturated fatty acid metabolites increase mouse retinal pathologic neovascularization--brief report.

Arteriosclerosis, thrombosis, and vascular biology (2014-01-25)
Zhuo Shao, Zhongjie Fu, Andreas Stahl, Jean-Sébastien Joyal, Colman Hatton, Aimee Juan, Christian Hurst, Lucy Evans, Zhenghao Cui, Dorothy Pei, Yan Gong, Dan Xu, Katherine Tian, Hannah Bogardus, Matthew L Edin, Fred Lih, Przemyslaw Sapieha, Jing Chen, Dipak Panigrahy, Ann Hellstrom, Darryl C Zeldin, Lois E H Smith
ABSTRACT

Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary ω3-long-chain polyunsaturated fatty acids (ω3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a ω3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8-overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both ω3LCPUFA and ω6LCPUFA and antiangiogenic role of sEH in ω3LCPUFA metabolism were corroborated in aortic ring assays. Our results suggest that CYP2C ω3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipoxidase from Glycine max (soybean), Type I-B, lyophilized powder, ≥50,000 units/mg solid
Sigma-Aldrich
Lipoxidase from Glycine max (soybean), Type V, ammonium sulfate suspension, 500,000-1,000,000 units/mg protein
Sigma-Aldrich
Cyclooxygenase 1 from sheep, glycerol solution, ≥1500 units/mg protein
Sigma-Aldrich
Epoxide Hydrolase from Rhodococcus rhodochrous, lyophilized powder, beige, ≥0.2 U/g