Skip to Content
Merck
  • Cholesterol slows down the lateral mobility of an oxidized phospholipid in a supported lipid bilayer.

Cholesterol slows down the lateral mobility of an oxidized phospholipid in a supported lipid bilayer.

Langmuir : the ACS journal of surfaces and colloids (2010-10-15)
Birgit Plochberger, Thomas Stockner, Salvatore Chiantia, Mario Brameshuber, Julian Weghuber, Albin Hermetter, Petra Schwille, Gerhard J Schütz
ABSTRACT

We investigated the mobility and phase-partitioning of the fluorescent oxidized phospholipid analogue 1-palmitoyl-2-glutaroyl-sn-glycero-3-phospho-N-Alexa647-ethanolamine (PGPE-Alexa647) in supported lipid bilayers. Compared to the conventional phospholipid dihexadecanoylphosphoethanolamine (DHPE)-Bodipy we found consistently higher diffusion constants. The effect became dramatic when immobile obstacles were inserted into the bilayer, which essentially blocked the diffusion of DHPE-Bodipy but hardly influenced the movements of PGPE-Alexa647. In a supported lipid bilayer made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the differences in probe mobility leveled off with increasing cholesterol content. Using coarse-grained molecular dynamics simulations, we could ascribe this effect to increased interactions between the oxidized phospholipid and the membrane matrix, concomitant with a translation in the headgroup position of the oxidized phospholipid: at zero cholesterol content, its headgroup is shifted to the outside of the DOPC headgroup region, whereas increasing cholesterol concentrations pulls the headgroup into the bilayer plane.