Skip to Content
Merck
  • The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC.

The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC.

Colloids and surfaces. B, Biointerfaces (2014-06-16)
C Carbone, A Campisi, D Manno, A Serra, M Spatuzza, T Musumeci, R Bonfanti, G Puglisi
ABSTRACT

Exploiting the experimental factorial design and the potentiality of Turbiscan AG Station, we developed and characterized unmodified and DDAB-coated NLC prepared by a low energy organic solvent free phase inversion temperature technique. A 22 full factorial experimental design was developed in order to study the effects of two independent variables (DDAB and ferulic acid) and their interaction on mean particle size and zeta potential values. The factorial planning was validated by ANOVA analysis; the correspondence between the predicted values of size and zeta and those measured experimentally confirmed the validity of the design and the equation applied for its resolution. The DDAB-coated NLC were significantly affected in their physico-chemical properties by the presence of DDAB, as showed by the results of the experimental design. The coated NLC showed higher physical stability with no particles aggregation compared to the unmodified NLC, as demonstrated by Turbiscan(®) AGS measurements. X-ray diffraction, Raman spectroscopy and Cryo-TEM images allowed us to assert that DDAB plays a critical role in increasing the lipids structural order with a consequent enhancement of the NLC physical stability. Furthermore, the results of the in vitro biological studies allow the revisiting of the role of DDAB to the benefit of glioblastoma treatment, due to its efficacy in increasing the NLC uptake and reducing the viability of human glioblastoma cancer cells (U87MG).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Palmityl palmitate, ≥99%
Supelco
Dimethyl sulfoxide, analytical standard
Supelco
trans-Ferulic acid, matrix substance for MALDI-MS, ≥99.0% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
trans-Ferulic acid, 99%
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, purum, ≥99.0% (TLC)
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
trans-Ferulic acid, ≥99%
Supelco
5α-Androstan-17β-ol-3-one, VETRANAL®, analytical standard
Millipore
Bifido Selective Supplement B, suitable for microbiology
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
trans-Ferulic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Supelco
Dimethyl sulfoxide, for inorganic trace analysis, ≥99.99995% (metals basis)
Cetyl palmitate 95, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Ferulic acid, European Pharmacopoeia (EP) Reference Standard
USP
Glacial acetic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC, ≥99.7%
Dimethyl sulfoxide, European Pharmacopoeia (EP) Reference Standard