Skip to Content
Merck
  • Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter.

Identification of functional glucocorticoid response elements in the mouse FoxO1 promoter.

Biochemical and biophysical research communications (2014-06-28)
Weiping Qin, Jiangping Pan, Yiwen Qin, David N Lee, William A Bauman, Christopher Cardozo
ABSTRACT

Glucocorticoids stimulate muscle atrophy through a cascade of signals that includes activation of FoxO transcription factors which then upregulate multiple genes to promote degradation of myofibrillar and other muscle proteins and inhibit protein synthesis. Our previous finding that glucocorticoids upregulate mRNA levels for FoxO1 in skeletal muscle led us to hypothesize that the FoxO1 gene contains one or more glucocorticoid response elements (GREs). Here we show that upregulation of FoxO1 expression by glucocorticoids requires the glucocorticoid receptor (GR) and binding of hormones to it. In cultured C2C12 myoblasts dexamethasone did not alter FoxO1 mRNA stability. Computational analysis predicted that the proximal promoter of the FoxO1 gene contained a cluster of eight GRE half sites and one highly conserved near-consensus SRE; the cluster is found between -800 and -2000bp upstream of the first codon of the FoxO1 gene. A reporter gene constructed using the first 2kb of the FoxO1 promoter was stimulated by dexamethasone. Removal of a 5' domain containing half of the GREs reduced reporter gene activity and removal of all GREs in this region ablated activation by dexamethasone. Restriction fragments of the cluster of 8 upstream GREs bound recombinant GR in gel shift assays. Collectively, the data demonstrate that the proximal promoter of the FoxO1 gene contains multiple functional GREs, indicating that upregulation of FoxO1 expression by glucocorticoids through GREs represents an additional mechanism by which the GR drives glucocorticoid-mediated muscle atrophy. These findings are also relevant to other physiological roles of FoxO1 such as regulation of hepatic metabolism.

MATERIALS
Product Number
Brand
Product Description

Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human GSR
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Gsr
Sigma-Aldrich
Glutathione Reductase human, buffered aqueous solution, ≥10 units/mg protein, recombinant, expressed in E. coli
Supelco
Dexamethasone solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human GCGR
Dexamethasone, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human NR3C1
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Nr3c1
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone-Water Soluble, suitable for cell culture, BioReagent
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard