Skip to Content
Merck
  • Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani Reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323.

Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani Reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323.

Journal of agricultural and food chemistry (2012-02-23)
Chia-Ann Yang, Chi-Hua Cheng, Jeng-Woei Lee, Chaur-Tsuen Lo, Shu-Ying Liu, Kou-Cheng Peng
ABSTRACT

The monomeric L-amino acid oxidase (mTh-LAAO) of Trichoderma harzianum ETS 323 has been suggested to antagonize Rhizoctonia solani by an unknown mechanism. Here, the mTh-LAAO-treated R. solani exhibited hyphal lysis and apoptotic characteristics such as DNA fragmentation, reactive oxygen species (ROS) accumulation, lipid peroxidation, and mitochondrial membrane potential depolarization. This hyphal lysis was suppressed by the mitochondria-dependent apoptosis inhibitor oligomycin while accompanied by reduction of ROS accumulation. This result suggested that mitochondria-mediated apoptosis in R. solani was involved in mTh-LAAO-induced growth inhibition, which was supported by the evidence of cytocheome c release and activation of caspases 9 and 3. Furthermore, the data indicated that the mTh-LAAO-induced fungal cell death was also closely interrelated with the interaction of mTh-LAAO with R. solani hyphal cell wall proteins. These results illuminate the biological function and mechanism underlying the antagonistic action of T. harzianum mTh-LAAO against fungal pathogens.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Amino Acid Oxidase from Crotalus atrox (Western Diamondback Rattlesnake), Type VI, dried venom
Sigma-Aldrich
L-Amino Acid Oxidase from Crotalus adamanteus, Type IV, ≥4.0 units/mg protein, aqueous suspension
Sigma-Aldrich
L-Amino Acid Oxidase from Crotalus adamanteus, Type I (dried venom)