Skip to Content
Merck
  • Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery.

Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid-Lipid Fragments Effective in Enhancing Hydrophobic Drug Delivery.

Langmuir : the ACS journal of surfaces and colloids (2019-11-07)
Yueheng Zhang, Zahra Heidari, Yang Su, Tianyi Yu, Sunting Xuan, Marzhana Omarova, Yucel Aydin, Srikanta Dash, Donghui Zhang, Vijay John
ABSTRACT

Peptoids are highly biocompatible pseudopeptidic polyglycines with designable substituents on the nitrogen atoms. The therapeutic and drug-carrying potential of these materials requires a fundamental understanding of their interactions with lipid bilayers. In this work, we use amphiphilic polypeptoids with up to 100 monomeric units where a significant fraction (26%) of the nitrogen atoms are functionalized with decyl groups (hydrophobes) that insert into the lipid bilayer through the hydrophobic effect. These hydrophobically modified polypeptoids (HMPs) insert their hydrophobes into lipid bilayers creating instabilities that lead to the rupture of vesicles. At low HMP concentrations, such rupture leads to the creation of large fragments which remarkably anchor to intact vesicles through the hydrophobic effect. At high HMP concentrations, all vesicles rupture to smaller HMP-lipid fragments of the order of 10 nm. We show that the technique for such nanoscale polymer-lipid fragments can be exploited to sustain highly hydrophobic drug species in solution. Using the kinase inhibitor, Sorafenib as a model drug, it is shown that HMP-lipid fragments containing the drug can efficiently enter a hepatocellular carcinoma cell line (Huh 7.5), indicating the use of such fragments as drug delivery nanocarriers.

MATERIALS
Product Number
Brand
Product Description

Avanti
Soy PC (95%), Avanti Research - A Croda Brand
Avanti
18:1 PE CF, Avanti Research - A Croda Brand 810332C
Avanti
18:1 PE CF, Avanti Research - A Croda Brand 810332P, powder