Direkt zum Inhalt
Merck

Omics-based responses induced by bosentan in human hepatoma HepaRG cell cultures.

Archives of toxicology (2018-05-16)
Robim M Rodrigues, Laxmikanth Kollipara, Umesh Chaudhari, Agapios Sachinidis, René P Zahedi, Albert Sickmann, Annette Kopp-Schneider, Xiaoqi Jiang, Hector Keun, Jan Hengstler, Marlies Oorts, Pieter Annaert, Eef Hoeben, Eva Gijbels, Joery De Kock, Tamara Vanhaecke, Vera Rogiers, Mathieu Vinken
ZUSAMMENFASSUNG

Bosentan is well known to induce cholestatic liver toxicity in humans. The present study was set up to characterize the hepatotoxic effects of this drug at the transcriptomic, proteomic, and metabolomic levels. For this purpose, human hepatoma-derived HepaRG cells were exposed to a number of concentrations of bosentan during different periods of time. Bosentan was found to functionally and transcriptionally suppress the bile salt export pump as well as to alter bile acid levels. Pathway analysis of both transcriptomics and proteomics data identified cholestasis as a major toxicological event. Transcriptomics results further showed several gene changes related to the activation of the nuclear farnesoid X receptor. Induction of oxidative stress and inflammation were also observed. Metabolomics analysis indicated changes in the abundance of specific endogenous metabolites related to mitochondrial impairment. The outcome of this study may assist in the further optimization of adverse outcome pathway constructs that mechanistically describe the processes involved in cholestatic liver injury.