Saltar al contenido
Merck

Dysbindin links presynaptic proteasome function to homeostatic recruitment of low release probability vesicles.

Nature communications (2018-01-20)
Corinna Wentzel, Igor Delvendahl, Sebastian Sydlik, Oleg Georgiev, Martin Müller
RESUMEN

Here we explore the relationship between presynaptic homeostatic plasticity and proteasome function at the Drosophila neuromuscular junction. First, we demonstrate that the induction of homeostatic plasticity is blocked after presynaptic proteasome perturbation. Proteasome inhibition potentiates release under baseline conditions but not during homeostatic plasticity, suggesting that proteasomal degradation and homeostatic plasticity modulate a common pool of vesicles. The vesicles that are regulated by proteasome function and recruited during homeostatic plasticity are highly EGTA sensitive, implying looser Ca2+ influx-release coupling. Similar to homeostatic plasticity, proteasome perturbation enhances presynaptic Ca2+ influx, readily-releasable vesicle pool size, and does not potentiate release after loss of specific homeostatic plasticity genes, including the schizophrenia-susceptibility gene dysbindin. Finally, we provide genetic evidence that Dysbindin levels regulate the access to EGTA-sensitive vesicles. Together, our data suggest that presynaptic protein degradation opposes the release of low-release probability vesicles that are potentiated during homeostatic plasticity and whose access is controlled by dysbindin.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Disolución de Bouin, histological fixative
Sigma-Aldrich
Anti-Ubiquitin Mouse mAb (FK2), liquid, clone FK2, Calbiochem®
Sigma-Aldrich
MG-132(R), ≥95% (HPLC)
Sigma-Aldrich
Lactacystin, ≥90% (HPLC)