Saltar al contenido
Merck

Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity.

Nature neuroscience (2016-02-09)
Nicholas L Weilinger, Alexander W Lohman, Brooke D Rakai, Evelyn M M Ma, Jennifer Bialecki, Valentyna Maslieieva, Travis Rilea, Mischa V Bandet, Nathan T Ikuta, Lucas Scott, Michael A Colicos, G Campbell Teskey, Ian R Winship, Roger J Thompson
RESUMEN

Overactivation of neuronal N-methyl-D-aspartate receptors (NMDARs) causes excitotoxicity and is necessary for neuronal death. In the classical view, these ligand-gated Ca(2+)-permeable ionotropic receptors require co-agonists and membrane depolarization for activation. We report that NMDARs signal during ligand binding without activation of their ion conduction pore. Pharmacological pore block with MK-801, physiological pore block with Mg(2+) or a Ca(2+)-impermeable NMDAR variant prevented NMDAR currents, but did not block excitotoxic dendritic blebbing and secondary currents induced by exogenous NMDA. NMDARs, Src kinase and Panx1 form a signaling complex, and activation of Panx1 required phosphorylation at Y308. Disruption of this NMDAR-Src-Panx1 signaling complex in vitro or in vivo by administration of an interfering peptide either before or 2 h after ischemia or stroke was neuroprotective. Our observations provide insights into a new signaling modality of NMDARs that has broad-reaching implications for brain physiology and pathology.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
10Panx1 trifluoroacetate salt, ≥98% (HPLC)
Sigma-Aldrich
Scrambled 10Panx1 trifluoroacetate salt, ≥98% (HPLC)