Saltar al contenido
Merck
  • Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles.

Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles.

Autophagy (2014-07-22)
Laure-Anne Ligeon, Kevin Moreau, Nicolas Barois, Antonino Bongiovanni, Delphine-Armelle Lacorre, Elisabeth Werkmeister, Véronique Proux-Gillardeaux, Thierry Galli, Frank Lafont
RESUMEN

Yersinia pseudotuberculosis can replicate inside macrophages by hijacking autophagy and blocking autophagosome acidification. In bone marrow-derived macrophages, the bacteria are mainly observed inside double-membrane vacuoles positive for LC3, a hallmark of autophagy. Here, we address the question of the membrane traffic during internalization of Yersinia investigating the role of vesicle- associated membrane proteins (VAMPs). First, we show that as in epithelial cells, Yersinia pseudotuberculosis replicates mainly in nonacidic LC3-positive vacuoles. Second, in these cells, we unexpectedly found that VAMP3 localizes preferentially to Yersinia-containing vacuoles (YCVs) with single membranes using correlative light-electron microscopy. Third, we reveal the precise kinetics of VAMP3 and VAMP7 association with YCVs positive for LC3. Fourth, we show that VAMP7 knockdown alters LC3's association with single-and multimembrane-YCVs. Finally, in uninfected epithelial cells stimulated for autophagy, VAMP3 overexpression and knockdown led respectively to a lower and higher number of double-membrane, LC3-positive vesicles. Hence, our results highlight the role that VAMPs play in selection of the pathways leading to generation of ultrastructurally different LC3 compartments and pave the way for determining the full set of docking and fusion proteins involved in Yersinia pseudotuberculosis' intravesicular life cycle.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Borohidruro de sodio, powder, ≥98.0%
Sigma-Aldrich
Óxido de (±)-propileno, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
MISSION® esiRNA, targeting human VAMP7 (2)