Saltar al contenido
Merck

Analysis of the local organization and dynamics of cellular actin networks.

The Journal of cell biology (2013-10-02)
Weiwei Luo, Cheng-han Yu, Zi Zhao Lieu, Jun Allard, Alex Mogilner, Michael P Sheetz, Alexander D Bershadsky
RESUMEN

Actin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm.