Saltar al contenido
Merck

Effect of NBCe1 deletion on renal citrate and 2-oxoglutarate handling.

Physiological reports (2016-04-28)
Gunars Osis, Mary E Handlogten, Hyun-Wook Lee, Kathleen S Hering-Smith, Weitao Huang, Michael F Romero, Jill W Verlander, I David Weiner
RESUMEN

The bicarbonate transporter, NBCe1 (SLC4A4), is necessary for at least two components of the proximal tubule contribution to acid-base homeostasis, filtered bicarbonate reabsorption, and ammonia metabolism. This study's purpose was to determine NBCe1's role in a third component of acid-base homeostasis, organic anion metabolism, by studying mice with NBCe1 deletion. Because NBCe1 deletion causes metabolic acidosis, we also examined acid-loaded wild-type adult mice to determine if the effects of NBCe1 deletion were specific to NBCe1 deletion or were a non-specific effect of the associated metabolic acidosis. Both NBCe1 KO and acid-loading decreased citrate excretion, but in contrast to metabolic acidosis alone, NBCe1 KO decreased expression of the apical citrate transporter, NaDC-1. Thus, NBCe1 expression is necessary for normal NaDC-1 expression, and NBCe1 deletion induces a novel citrate reabsorptive pathway. Second, NBCe1 KO increased 2-oxoglutarate excretion. This could not be attributed to the metabolic acidosis as experimental acidosis decreased excretion. Increased 2-oxoglutarate excretion could not be explained by changes in plasma 2-oxoglutarate levels, the glutaminase I or the glutaminase II generation pathways, 2-oxoglutarate metabolism, its putative apical 2-oxoglutarate transporter, OAT10, or its basolateral transporter, NaDC-3. (1) NBCe1 is necessary for normal proximal tubule NaDC-1 expression; (2) NBCe1 deletion results in stimulation of a novel citrate reabsorptive pathway; and (3) NBCe1 is necessary for normal 2-oxoglutarate metabolism through mechanisms independent of expression of known transport and metabolic pathways.