Saltar al contenido
Merck
  • Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

Fungal genetics and biology : FG & B (2015-06-09)
Tao Zhang, Ping Ren, Vishnu Chaturvedi, Sudha Chaturvedi
RESUMEN

The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Glicerol, for molecular biology, ≥99.0%
Sigma-Aldrich
MES hydrate, ≥99.5% (titration)
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosa, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
Urea, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Dextrosa, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
MES hydrate, BioPerformance Certified, suitable for cell culture, ≥99.5%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
MES monohydrate, BioXtra, ≥99.0% (T)
Sigma-Aldrich
Glicerol solution, 83.5-89.5% (T)
Sigma-Aldrich
3′,5′-Dimethoxy-4′-hydroxyacetophenone, 97%
Sigma-Aldrich
Glicerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glicerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
D-(+)-Glucosa, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
MES hydrate, ≥99.5% (titration), pH 2.5-4.0 (0.5 M in H2O), BioXtra
Sigma-Aldrich
Glicerol, FCC, FG
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
Glicerol, ≥99.5%
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
D-(+)-Glucosa, ACS reagent
Sigma-Aldrich
D-(+)-Glucosa, suitable for mouse embryo cell culture, ≥99.5% (GC)
SAFC
MES monohydrate
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Glicerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
D-(+)-Glucosa, Hybri-Max, powder, BioReagent, suitable for hybridoma