Saltar al contenido
Merck
  • Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate.

Influence of Grape Composition on Red Wine Ester Profile: Comparison between Cabernet Sauvignon and Shiraz Cultivars from Australian Warm Climate.

Journal of agricultural and food chemistry (2015-04-24)
Guillaume Antalick, Katja Šuklje, John W Blackman, Campbell Meeks, Alain Deloire, Leigh M Schmidtke
RESUMEN

The relationship between grape composition and subsequent red wine ester profile was examined. Cabernet Sauvignon and Shiraz, from the same Australian very warm climate vineyard, were harvested at two different stages of maturity and triplicate wines were vinified. Grape analyses focused on nitrogen and lipid composition by measuring 18 amino acids by HPLC-FLD, 3 polyunsaturated fatty acids, and 6 C6-compounds derived from lipid degradation by GC-MS. Twenty esters and four higher alcohols were analyzed in wines by HS-SPME-GC-MS. Concentrations of the ethyl esters of branched acids were significantly affected by grape maturity, but the variations were inconsistent between cultivars. Small relative variations were observed between wines for ethyl esters of fatty acids, whereas higher alcohol acetates displayed the most obvious differences with concentrations ranging from 1.5- to 26-fold higher in Shiraz than in Cabernet Sauvignon wines regardless of the grape maturity. Grape analyses revealed the variations of wine ester composition might be related to specific grape juice nitrogen composition and lipid metabolism. To the authors' knowledge the present study is the first to investigate varietal differences in the ester profiles of Shiraz and Cabernet Sauvignon wines made with grapes harvested at different maturity stages.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Ácido L-ascórbico, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
Ácido L-ascórbico, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
Hidróxido de sodio solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido L-ascórbico, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Ácido L-ascórbico, reagent grade, crystalline
Sigma-Aldrich
Decanoic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Hexanal, 98%
Sigma-Aldrich
Decanoic acid, ≥98.0%
Sigma-Aldrich
Ácido L-ascórbico, reagent grade
Sigma-Aldrich
Ácido L-ascórbico, meets USP testing specifications
Sigma-Aldrich
Hidróxido de sodio, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Ácido L-ascórbico, 99%
Sigma-Aldrich
Acetato de etilo, anhydrous, 99.8%
Sigma-Aldrich
Acetato de etilo, ≥99%, FCC, FG
Sigma-Aldrich
Ácido L-ascórbico, FCC, FG
Sigma-Aldrich
cis-3-Hexen-1-ol, natural, >98%, FCC, FG
Sigma-Aldrich
cis-3-Hexen-1-ol, 98%
Sigma-Aldrich
Ácido L-ascórbico, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Acetato de etilo, natural, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl phenylacetate, ReagentPlus®, 99%
Sigma-Aldrich
Decanoic acid, natural, ≥98%, FCC, FG
Sigma-Aldrich
Ácido L-ascórbico, ACS reagent, ≥99%
Sigma-Aldrich
Hexanal, ≥97%, FCC, FG
Sigma-Aldrich
1-Hexanol, natural, ≥98%, FCC, FG
Sigma-Aldrich
cis-3-hexenal solution, 50% in triacetin, stabilized
Sigma-Aldrich
1-Hexanol, anhydrous, ≥99%
Sigma-Aldrich
Ethyl phenylacetate, ≥98%, FCC, FG
Sigma-Aldrich
Hexanal, natural, ≥95%, FG
Sigma-Aldrich
Alcohol hexílico, FCC, FG