Saltar al contenido
Merck

Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance.

Nature communications (2014-11-06)
Cecilio F Caldeira, Linda Jeanguenin, François Chaumont, François Tardieu
RESUMEN

Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
D-Manitol, ≥98% (GC)
Sigma-Aldrich
D-Manitol, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D-Manitol, ACS reagent
Supelco
D-Manitol, Pharmaceutical Secondary Standard; Certified Reference Material
USP
D-Manitol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D-Manitol, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-Manitol, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
D-Manitol, meets EP, FCC, USP testing specifications
D-Manitol, European Pharmacopoeia (EP) Reference Standard
Millipore
D-Manitol, ACS reagent, ≥99.0%, suitable for microbiology
Sigma-Aldrich
D-Manitol, tested according to Ph. Eur.
Supelco
D-Manitol, ≥99.9999% (metals basis), for boron determination