Saltar al contenido
Merck
  • Protonated rhodosemiquinone at the Q(B) binding site of the M265IT mutant reaction center of photosynthetic bacterium Rhodobacter sphaeroides.

Protonated rhodosemiquinone at the Q(B) binding site of the M265IT mutant reaction center of photosynthetic bacterium Rhodobacter sphaeroides.

Biochemistry (2015-03-12)
Ágnes Maróti, Colin A Wraight, Péter Maróti
RESUMEN

The second electron transfer from primary ubiquinone Q(A) to secondary ubiquinone Q(B) in the reaction center (RC) from Rhodobacter sphaeroides involves a protonated Q(B)(-) intermediate state whose low pK(a) makes direct observation impossible. Here, we replaced the native ubiquinone with low-potential rhodoquinone at the Q(B) binding site of the M265IT mutant RC. Because the in situ midpoint redox potential of Q(A) of this mutant was lowered approximately the same extent (≈100 mV) as that of Q(B) upon exchange of ubiquinone with low-potential rhodoquinone, the inter-quinone (Q(A) → Q(B)) electron transfer became energetically favorable. After subsequent saturating flash excitations, a period of two damped oscillations of the protonated rhodosemiquinone was observed. The Q(B)H(•) was identified by (1) the characteristic band at 420 nm of the absorption spectrum after the second flash and (2) weaker damping of the oscillation at 420 nm (due to the neutral form) than at 460 nm (attributed to the anionic form). The appearance of the neutral semiquinone was restricted to the acidic pH range, indicating a functional pK(a) of <5.5, slightly higher than that of the native ubisemiquinone (pK(a) < 4.5) at pH 7. The analysis of the pH and temperature dependencies of the rates of the second electron transfer supports the concept of the pH-dependent pK(a) of the semiquinone at the Q(B) binding site. The local electrostatic potential is severely modified by the strongly interacting neighboring acidic cluster, and the pK(a) of the semiquinone is in the middle of the pH range of the complex titration. The kinetic and thermodynamic data are discussed according to the proton-activated electron transfer mechanism combined with the pH-dependent functional pK(a) of the semiquinone at the Q(B) site of the RC.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro, for molecular biology
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Alcohol etílico puro, for molecular biology
Sigma-Aldrich
Ácido cítrico, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
BIS-TRIS propano, ≥99.0% (titration)
Sigma-Aldrich
Ferrocene, 98%
SAFC
BIS-TRIS propano
Sigma-Aldrich
Methylamine solution, 2.0 M in THF
USP
1,4-benzoquinona, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methylamine solution, 33 wt. % in absolute ethanol ((denatured with 1% toluene))
Sigma-Aldrich
Ácido cítrico, ≥99.5%, FCC, FG
Sigma-Aldrich
Ácido cítrico, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Methylamine solution, 2.0 M in methanol
USP
Ácido cítrico, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido cítrico, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Ácido cítrico, ACS reagent, ≥99.5%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ácido cítrico, 99%
Sigma-Aldrich
BIS-TRIS propano, BioPerformance Certified, suitable for cell culture, ≥99.0%
Sigma-Aldrich
MES solution, BioUltra, for molecular biology, 0.5 M in H2O
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Methylamine solution, 40 wt. % in H2O
USP
Etanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
BIS-TRIS propano, BioXtra, ≥99.0% (titration)
Sigma-Aldrich
p-Benzoquinona, reagent grade, ≥98%
Supelco
Ácido cítrico, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
p-Benzoquinona, Pharmaceutical Secondary Standard; Certified Reference Material