Saltar al contenido
Merck

Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis.

Biomaterials (2014-06-06)
Pengfei Xu, Haijun Yu, Zhiwen Zhang, Qingshuo Meng, Huiping Sun, Xianzhi Chen, Qi Yin, Yaping Li
RESUMEN

Metastasis is one of the major obstacles for the successful therapy of breast cancer. Although increased candidate drugs targeting cancer metastasis are tested, their clinical translation is limited by either serve toxicity or low efficacy. In present work, a nano-drug delivery system loading atorvastatin calcium (Ator) was developed for the efficient suppression of the metastasis of breast cancer. The nano-drug delivery system was constructed by a amphiphilic copolymer of methoxy polyethylene glycol-s-s-vitamin E succinate (mPEG-s-s-VES, PSV), which was consisted of a hydrophilic mPEG1k segment and a hydrophobic VES head, which were conjugated with a linker bearing amide and disulfide groups simultaneously. Self-assembly of PSV and Ator formed Ator-loaded PSV micelles (ASM) with good colloidal stability, high drug loading content (up to 50%) and great encapsulation efficiency (99.09 ± 0.28%). In cellular level, it was found that the ASM could efficiently release the Ator payload into cytosol due to detachment of PEG shell at high intracellular glutathione condition. ASM could significantly inhibit the migration and invasion of 4T1 breast cancer cells with inhibitory rates of 79.2% and 88.5%, respectively. In a 4T1 orthotropic mammary tumor metastatic cancer model, it was demonstrated that ASM could completely blocked the lung and liver metastasis of breast cancer with minimal toxicity owing to enhanced Ator accumulation in tumor and lung as compared with that of free Ator. The down-regulations of metastasis-promoting MMP-9, Twist and uPA proteins were demonstrated as the main underlying mechanism. As a result, ASM could be a promising drug delivery system for the efficient therapy of breast cancer metastasis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Metanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Metanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Metanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Metanol, BioReagent, ≥99.93%
Sigma-Aldrich
Metanol, Absolute - Acetone free
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Hematoxylin
USP
Metanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sulforhodamine B, Dye content 75 %
Sigma-Aldrich
Metanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sulforhodamine B sodium salt, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Metanol, anhydrous, 99.8%
Sigma-Aldrich
DL-α-Tocopherol succinate, semisynthetic, 1210 IU/g
Sigma-Aldrich
Metanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Sulforhodamine B sodium salt, Technical grade
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Supelco
DL-α-Tocopherol succinate, analytical standard
Supelco
Metanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanol, analytical standard
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Metanol, NMR reference standard
Sigma-Aldrich
DL-α-Tocopherol succinate, BioXtra, ≥98.0% (HPLC)
USP
DL-α-Tocopherol succinate, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.