Saltar al contenido
Merck

Mechanistic insight into the formation of cationic naked nanocrystals generated under equilibrium control.

Journal of the American Chemical Society (2014-10-11)
Sean E Doris, Jared J Lynch, Changyi Li, Andrew W Wills, Jeffrey J Urban, Brett A Helms
RESUMEN

Cationic naked nanocrystals (NCs) are useful building units for assembling hierarchical mesostructured materials. Until now, their preparation required strongly electrophilic reagents that irreversibly sever bonds between native organic ligands and the NC surface. Colloidal instabilities can occur during ligand stripping if exposed metal cations desorb from the surface. We hypothesized that cation desorption could be avoided were we able to stabilize the surface during ligand stripping via ion pairing. We were successful in this regard by carrying out ligand stripping under equilibrium control with Lewis acid-base adducts of BF3. To better understand the microscopic processes involved, we studied the reaction pathway in detail using in situ NMR experiments and electrospray ionization mass spectrometry. As predicted, we found that cationic NC surfaces are transiently stabilized post-stripping by physisorbed anionic species that arise from the reaction of BF3 with native ligands. This stabilization allows polar dispersants to reach the NC surface before cation desorption can occur. The mechanistic insights gained in this work provide a much-needed framework for understanding the interplay between NC surface chemistry and colloidal stability. These insights enabled the preparation of stable naked NC inks of desorption-susceptible NC compositions such as PbSe, which were easily assembled into new mesostructured films and polymer-nanocrystal composites with wide-ranging technological applications.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Alcohol etílico puro, 200 proof, for molecular biology
Sigma-Aldrich
Acetona, ACS reagent, ≥99.5%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Ácido nítrico, ACS reagent, 70%
Sigma-Aldrich
N,N-Dimetilformamida, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimetilformamida, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetona, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Alcohol etílico puro, 200 proof, meets USP testing specifications
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetona, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
1,4 Dioxano, ACS reagent, ≥99.0%, contains ≤25 ppm BHT as stabilizer
Sigma-Aldrich
Alcohol etílico puro, 190 proof, for molecular biology
Sigma-Aldrich
Ácido nítrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Ácido oleico, technical grade, 90%
Sigma-Aldrich
1-Octadecene, technical grade, 90%
Sigma-Aldrich
N,N-Dimetilformamida, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Tolueno, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Ácido nítrico, puriss. p.a., reag. ISO, reag. Ph. Eur., for determinations with dithizone, ≥65%
Sigma-Aldrich
Acetona, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
1,4 Dioxano, ACS reagent, ≥99.0%
Sigma-Aldrich
Ácido nítrico, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Octane, reagent grade, 98%
Sigma-Aldrich
N,N-Dimetilformamida, ReagentPlus®, ≥99%
Sigma-Aldrich
1,4 Dioxano, suitable for HPLC, ≥99.5%
Sigma-Aldrich
N,N-Dimetilformamida, for molecular biology, ≥99%
Sigma-Aldrich
Acetona, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Ácido oleico, BioReagent, suitable for cell culture