Saltar al contenido
Merck

Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE).

Chemosphere (2002-10-09)
Kun-Chang Huang, Richard A Couttenye, George E Hoag
RESUMEN

The kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) in aqueous solutions at various pH, temperature, oxidant concentration and ionic strength levels was studied. The MTBE degradation was found to follow a pseudo-first-order decay model. The pseudo-first-order rate constants of MTBE degradation by persulfate (31.5 mM) at pH 7.0 and ionic strength 0.11 M are approximately 0.13 x 10(-4), 0.48 x 10(-4), 2.4 x 10(-4) and 5.8 x 10(-4) S(-1) at 20, 30, 40 and 50 degrees C, respectively. Under the above reaction conditions, the reaction has an activation energy of 24.5 +/- 1.6 kcal/ mol and is influenced by temperature, oxidant concentration, pH and ionic strength. Raising the reaction temperature and persulfate concentration may significantly accelerate the MTBE degradation. However, increasing both pH (over the range of 2.5-11) and ionic strength (over the range of 0.11-0.53 M) will decrease the reaction rate. Reaction intermediates including tert-butyl formate, tert-butyl alcohol, acetone and methyl acetate were observed. These intermediate compounds were also degraded by persulfate under the experimental conditions. Additionally, MTBE degradation by persulfate in a groundwater was much slower than in phosphate-buffer solutions, most likely due to the presence of bicarbonate ions (radical scavengers) in the groundwater.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Terc-butilmetil éter, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Terc-butilmetil éter, ACS reagent, ≥99.0%
Sigma-Aldrich
Terc-butilmetil éter, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Terc-butilmetil éter, reagent grade, ≥98%
Sigma-Aldrich
Terc-butilmetil éter, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Terc-butilmetil éter, anhydrous, 99.8%
Sigma-Aldrich
Terc-butilmetil éter, reagent grade, 98%