Saltar al contenido
Merck

Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells.

Nature (2014-12-10)
Bryce W Carey, Lydia W S Finley, Justin R Cross, C David Allis, Craig B Thompson
RESUMEN

The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular α-ketoglutarate (αKG). Consequently, naive ES cells exhibit an elevated αKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular αKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable αKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular αKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucosa, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-Glucosa solution, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
D-(+)-Glucosa solution, 100 g/L in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
Dextrosa, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
L-Glutamic acid, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Glucosa, ≥99.5% (GC), BioXtra
Supelco
D-(+)-Glucosa, Pharmaceutical Secondary Standard; Certified Reference Material
USP
D-(+)-Glucosa, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Glutamic acid, from non-animal source, meets EP testing specifications, suitable for cell culture, 98.5-100.5%
Sigma-Aldrich
D-(+)-Glucosa, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Glucosa, ACS reagent
Supelco
D-(+)-Glucosa, analytical standard
Sigma-Aldrich
Anticuerpo anti-trimetil-histona H3 (Lys27), Upstate®, from rabbit
Sigma-Aldrich
L-(−)-Glucose, ≥99%
Sigma-Aldrich
L-Glutamic acid, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
α-Ketoglutaric acid, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
α-Ketoglutaric acid potassium salt, ≥98% (enzymatic)
Sigma-Aldrich
D-(+)-Glucosa, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
Ácido succínico, ACS reagent, ≥99.0%
Sigma-Aldrich
D-Glutamic acid, ≥99% (TLC)
Sigma-Aldrich
α-Ketoglutaric acid disodium salt dihydrate, ≥98.0% (dried material, NT)