Saltar al contenido
Merck
  • Development and validation of a method using supported liquid extraction for the simultaneous determination of midazolam and 1'-hydroxy-midazolam in human plasma by liquid chromatography with tandem mass spectrometry detection.

Development and validation of a method using supported liquid extraction for the simultaneous determination of midazolam and 1'-hydroxy-midazolam in human plasma by liquid chromatography with tandem mass spectrometry detection.

Journal of pharmaceutical and biomedical analysis (2011-10-14)
Camilla Svanström, Gunnar P Hansson, Leif D Svensson, Carl Johan Sennbro
RESUMEN

The metabolic conversion of midazolam (MDZ) to its main metabolite 1'-hydroxy-midazolam (1-OH-MDZ) can be used as a probe drug for cytochrome P450 3A (CYP3A) activity. A sensitive method for the simultaneous determination of MDZ and its metabolite 1-OH-MDZ in human plasma using supported liquid extraction (SLE) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection was developed and validated. Plasma samples (100 μL) were diluted with 0.5M NH(3) (aq) containing deuterated internal standards. The samples were extracted with ethyl acetate on a 96-well SLE-plate. Separation was performed on a Symmetry Shield RP18 column using an acidic gradient running from 2% to 95% methanol in 3 min. Detection was performed using a triple quadrupole mass spectrometer running in positive electrospray selected reaction monitoring (SRM) mode. The validated dynamic range was 0.2-100 nmol/L for both analytes. In the concentration range 0.6-75 nmol/L the extraction recoveries were in the ranges 91.2-98.6% and 94.5-98.3% for MDZ and 1-OH-MDZ, respectively. Matrix effects were more pronounced for MDZ than for 1-OH-MDZ but the response was still 75.4% or higher compared to a reference. The overall repeatability was within 2.2-7.6% for both analytes, the overall reproducibility was within 3.1-10.2% for both analytes and the overall accuracy bias was within -1.1 to 7.5% for both analytes. The method was successfully applied to determine the plasma concentrations of MDZ and 1-OH-MDZ in 14 healthy volunteers up to 24h after administration of a single oral dose of 2mg MDZ. The SLE technology was found to be convenient and suitable for sample preparation, and the developed method was found to be rapid, selective and reproducible for the simultaneous determination of MDZ and 1-OH-MDZ in human plasma.