Saltar al contenido
Merck
  • Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique.

Enthalpy changes during photosynthetic water oxidation tracked by time-resolved calorimetry using a photothermal beam deflection technique.

Biophysical journal (2007-11-13)
Roland Krivanek, Holger Dau, Michael Haumann
RESUMEN

The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn(4)Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, DeltaH, coupled to the formation of the radical pair Y(Z)(.+)Q(A)(-) (where Y(Z) is Tyr-161 of the D1 subunit of PSII) is estimated as -820 +/- 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be -400 +/- 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent DeltaV of about -13 A(3)). For the first time, the enthalpy change of the O(2)-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of DeltaH(S(3)-->S(0)) of -210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent DeltaV of about +42 A(3)) may reflect O(2) and proton release from the manganese complex, but also reorganization of the protein matrix.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Bromocresol Purple sodium salt, indicator grade, Dye content 90 %