Saltar al contenido
Merck

Tumoral microenvironment prevents de novo asparagine biosynthesis in B cell lymphoma, regardless of ASNS expression.

Science advances (2022-07-21)
Manuel Grima-Reyes, Ashaina Vandenberghe, Ivan Nemazanyy, Pauline Meola, Rachel Paul, Julie Reverso-Meinietti, Adriana Martinez-Turtos, Nicolas Nottet, Wai-Kin Chan, Philip L Lorenzi, Sandrine Marchetti, Jean-Ehrland Ricci, Johanna Chiche
RESUMEN

Depletion of circulating asparagine with l-asparaginase (ASNase) is a mainstay of leukemia treatment and is under investigation in many cancers. Expression levels of asparagine synthetase (ASNS), which catalyzes asparagine synthesis, were considered predictive of cancer cell sensitivity to ASNase treatment, a notion recently challenged. Using [U-13C5]-l-glutamine in vitro and in vivo in a mouse model of B cell lymphomas (BCLs), we demonstrated that supraphysiological or physiological concentrations of asparagine prevent de novo asparagine biosynthesis, regardless of ASNS expression levels. Overexpressing ASNS in ASNase-sensitive BCL was insufficient to confer resistance to ASNase treatment in vivo. Moreover, we showed that ASNase's glutaminase activity enables its maximal anticancer effect. Together, our results indicate that baseline ASNS expression (low or high) cannot dictate BCL dependence on de novo asparagine biosynthesis and predict BCL sensitivity to dual ASNase activity. Thus, except for ASNS-deficient cancer cells, ASNase's glutaminase activity should be considered in the clinic.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Suero fetal bovino, non-USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Tunicamycin from Streptomyces sp.