Saltar al contenido
Merck

Therapeutic Potential of Patient iPSC-Derived iMelanocytes in Autologous Transplantation.

Cell reports (2019-04-11)
Li-Ping Liu, Yu-Mei Li, Ning-Ning Guo, Shu Li, Xiaolong Ma, Yi-Xuan Zhang, Yimeng Gao, Jian-Ling Huang, Dong-Xu Zheng, Lu-Yuan Wang, Hui Xu, Lijian Hui, Yun-Wen Zheng
RESUMEN

Induced pluripotent stem cells (iPSCs) are a promising melanocyte source as they propagate indefinitely and can be established from patients. However, the in vivo functions of human iPSC-derived melanocytes (hiMels) remain unknown. Here, we generated hiMels from vitiligo patients using a three-dimensional system with enhanced differentiation efficiency, which showed characteristics of human epidermal melanocytes with high sequence similarity and involved in multiple vitiligo-associated signaling pathways. A modified hair follicle reconstitution assay in vivo showed that MITF+PAX3+TYRP1+ hiMels were localized in the mouse hair bulb and epidermis and produced melanin up to 7 weeks after transplantation, whereas MITF+PAX3+TYRP1- hiMelanocyte stem cells integrated into the bulge-subbulge regions. Overall, these data demonstrate the long-term functions of hiMels in vivo to reconstitute pigmented hair follicles and to integrate into normal regions for both mature melanocytes and melanocyte stem cells, providing an alternative source of personalized cellular therapy for depigmentation.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Mitomicina C from Streptomyces caespitosus, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Anticuerpo anti-nuclear, clon 235-1, clone 235-1, Chemicon®, from mouse
Sigma-Aldrich
Anticuerpo anti-TRA-1-60, clon TRA-1-60, clone TRA-1-60, Chemicon®, from mouse
Sigma-Aldrich
Anti-TRP1/TYRP1 Antibody, clone TA99, Azide Free, clone TA99, 1 mg/mL, from mouse
Sigma-Aldrich
Anti-Tyrosinase Antibody, clone T311, clone T311, Upstate®, from mouse