Saltar al contenido
Merck

Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita.

Molecular genetics and genomics : MGG (2019-02-20)
Robert Herzog, Irina Solovyeva, Michael Bölker, Luis G Lugones, Florian Hennicke
RESUMEN

Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.