Saltar al contenido
Merck
  • Nucleolipids of the Nucleoside Antibiotics Formycins A and B: Synthesis and Biomedical Characterization Particularly Using Glioblastoma Cells.

Nucleolipids of the Nucleoside Antibiotics Formycins A and B: Synthesis and Biomedical Characterization Particularly Using Glioblastoma Cells.

Chemistry & biodiversity (2019-02-19)
Helmut Rosemeyer, Christine Knies, Katharina Hammerbacher, Eugenia Bender, Gabriel A Bonaterra, Ricarda Hannen, Jörg W Bartsch, Christopher Nimsky, Ralf Kinscherf
RESUMEN

Two lipophilic derivatives of formycin A (1) and formycin B (5) carrying an O-2',3'-(ethyl levulinate) ketal group have been prepared. These were base-alkylated at N(1) (for 1) and N(1) and N(6) (for 5) with both isopentenyl and all-trans-farnesyl residues. Upon the prenylation, side reactions were observed, resulting in the formation of nucleolipids with a novel tricyclic nucleobase (→4a, 4b). In the case of formycin B, O-2',3'-(ethyl levulinate) (6) farnesylation gave the double prenylated nucleolipid 7. All new compounds were characterized by 1 H-, 13 C-, UV/VIS and fluorescence spectroscopy, by ESI-MS spectrometry and/or by elemental analysis. Log P determinations between water and octanol as well as water and cyclohexane of a selection of compounds allowed qualitative conclusions concerning their potential blood-brain barrier passage efficiency. All compounds were investigated in vitro with respect to their cytotoxic activity toward rat malignant neuroectodermal BT4Ca as well as against a series of human glioblastoma cell lines (GOS 3, U-87 MG and GBM 2014/42). In order to differentiate between anticancer and side effects of the novel nucleolipids, we also studied their activity on PMA-differentiated human THP-1 macrophages. Here, we show that particularly the formycin A derivative 3b possesses promising antitumor properties in several cancer cell lines with profound cytotoxic effects partly on human glioblastoma cells, with a higher efficacy than the chemotherapeutic drug 5-fluorouridine.