Saltar al contenido
Merck
  • An αB-Crystallin Peptide Rescues Compartmentalization and Trafficking Response to Cu Overload of ATP7B-H1069Q, the Most Frequent Cause of Wilson Disease in the Caucasian Population.

An αB-Crystallin Peptide Rescues Compartmentalization and Trafficking Response to Cu Overload of ATP7B-H1069Q, the Most Frequent Cause of Wilson Disease in the Caucasian Population.

International journal of molecular sciences (2018-06-30)
Simona Allocca, Michela Ciano, Maria Camilla Ciardulli, Chiara D'Ambrosio, Andrea Scaloni, Daniela Sarnataro, Maria Gabriella Caporaso, Massimo D'Agostino, Stefano Bonatti
RESUMEN

The H1069Q substitution is the most frequent mutation of the Cu transporter ATP7B that causes Wilson disease in the Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes, but, in the presence of excessive Cu, it relocates to the endo-lysosomal compartment to excrete Cu via bile canaliculi. In contrast, ATP7B-H1069Q is strongly retained in the ER, does not reach the Golgi complex and fails to move to the endo-lysosomal compartment in the presence of excessive Cu, thus causing toxic Cu accumulation. We have previously shown that, in transfected cells, the small heat-shock protein αB-crystallin is able to correct the mislocalization of ATP7B-H1069Q and its trafficking in the presence of Cu overload. Here, we first show that the α-crystallin domain of αB-crystallin mimics the effect of the full-length protein, whereas the N- and C-terminal domains have no such effect. Next, and most importantly, we demonstrate that a twenty-residue peptide derived from the α-crystallin domain of αB-crystallin fully rescues Golgi localization and the trafficking response of ATP7B-H1069Q in the presence of Cu overload. In addition, we show that this peptide interacts with the mutant transporter in the live cell. These results open the way to attempt developing a pharmacologically active peptide to specifically contrast the Wilson disease form caused by the ATP7B-H1069Q mutant.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
5-Carboxy-tetramethylrhodamine N-succinimidyl ester, BioReagent, suitable for fluorescence