Skip to Content
Merck

Nanodiamonds suppress the growth of lithium dendrites.

Nature communications (2017-08-26)
Xin-Bing Cheng, Meng-Qiang Zhao, Chi Chen, Amanda Pentecost, Kathleen Maleski, Tyler Mathis, Xue-Qiang Zhang, Qiang Zhang, Jianjun Jiang, Yury Gogotsi
ABSTRACT

Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low Coulombic efficiency and severe safety hazards. Herein, we report that nanodiamonds work as an electrolyte additive to co-deposit with lithium ions and produce dendrite-free lithium deposits. First-principles calculations indicate that lithium prefers to adsorb onto nanodiamond surfaces with a low diffusion energy barrier, leading to uniformly deposited lithium arrays. The uniform lithium deposition morphology renders enhanced electrochemical cycling performance. The nanodiamond-modified electrolyte can lead to a stable cycling of lithium | lithium symmetrical cells up to 150 and 200 h at 2.0 and 1.0 mA cm

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nanodiamonds, 65 nm octadecane functionalized, powder
Sigma-Aldrich
Nanodiamonds, 65 nm, dodecane functionalized, powder