Skip to Content
Merck
  • Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate.

Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate.

Scientific reports (2017-01-07)
Larissa S Moniz, Silvia Surinova, Essam Ghazaly, Lorena Gonzalez Velasco, Syed Haider, Juan Carlos Rodríguez-Prados, Inma M Berenjeno, Claude Chelala, Bart Vanhaesebroeck
ABSTRACT

To identify novel effectors and processes regulated by PI3K pathway activation, we performed an unbiased phosphoproteomic screen comparing two common events of PI3K deregulation in cancer: oncogenic Pik3ca mutation (Pik3caH1047R) and deletion of Pten. Using mouse embryonic fibroblast (MEF) models that generate inducible, low-level pathway activation as observed in cancer, we quantified 7566 unique phosphopeptides from 3279 proteins. A number of proteins were found to be differentially-regulated by Pik3caH1047R and Pten loss, suggesting unique roles for these two events in processes such as vesicular trafficking, DNA damage repair and RNA splicing. We also identified novel PI3K effectors that were commonly-regulated, including putative AKT substrates. Validation of one of these hits, confirmed NT5C (5',3'-Nucleotidase, Cytosolic) as a novel AKT substrate, with an unexpected role in actin cytoskeleton regulation via an interaction with the ARP2/3 complex. This study has produced a comprehensive data resource and identified a new link between PI3K pathway activation and actin regulation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)