- Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces.
Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces.
Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.