Skip to Content
Merck
  • FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC.

FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC.

Oncotarget (2015-04-18)
Francesco Morra, Chiara Luise, Francesco Merolla, Ina Poser, Roberta Visconti, Gennaro Ilardi, Simona Paladino, Hiroyuki Inuzuka, Gianluca Guggino, Roberto Monaco, David Colecchia, Guglielmo Monaco, Aniello Cerrato, Mario Chiariello, Krista Denning, Pier Paolo Claudio, Stefania Staibano, Angela Celetti
ABSTRACT

CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet.We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response.Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trimethylaluminum solution, 2.0 M in toluene
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
DL-Serine, ≥98% (TLC)
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Cycloheximide solution, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
SAFC
L-Glutamine
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Cycloheximide, Biotechnology Performance Certified
Sigma-Aldrich
L-Threonine, BioXtra, ≥99.5% (NT)
Sigma-Aldrich
Trimesic acid, 95%
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-Threonine, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
2′-Deoxycytidine hydrochloride, BioReagent, suitable for cell culture
Sigma-Aldrich
Monoclonal Anti-polyHistidine antibody produced in mouse, clone HIS-1, ascites fluid
Sigma-Aldrich
Thymidine, ≥99%
Sigma-Aldrich
Thymidine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
Okadaic acid from Prorocentrum concavum, 92-100% (HPLC)
Sigma-Aldrich
Thymidine, ≥99.0% (HPLC)
Sigma-Aldrich
Cycloheximide, ≥90% (HPLC)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Cycloheximide, from microbial, ≥94% (TLC)