Skip to Content
Merck
  • In vivo expansion of HLA-B35 alloreactive T cells sharing homologous T cell receptors: evidence for maintenance of an oligoclonally dominated allospecificity by persistent stimulation with an autologous MHC/peptide complex.

In vivo expansion of HLA-B35 alloreactive T cells sharing homologous T cell receptors: evidence for maintenance of an oligoclonally dominated allospecificity by persistent stimulation with an autologous MHC/peptide complex.

The Journal of experimental medicine (1995-02-01)
A Steinle, C Reinhardt, P Jantzer, D J Schendel
ABSTRACT

The nature of alloantigens seen by T lymphocytes, in particular the role of peptides in allorecognition, has been studied intensively whereas knowledge about the in vivo emergence, diversity, and the structural basis of specificity of alloreactive T cells is very limited. Here we describe human T cell clones that recognize HLA-B35 alloantigens in a peptide-dependent manner. TCR sequence analysis revealed that several of these allospecific clones utilize homologous TCR: they all express TCRAV2S3J36C1 and TCRBV4S1J2S7C2 chains with highly related CDR3 sequences. Thus peptide-specific alloreactivity is reflected in homologous CDR3 sequences in a manner similar to that described for T cells that recognize nominal peptide/self-MHC complexes. The in vivo frequency of this TCR specificity was studied in unstimulated PBL of the responding cell donor who was not sensitized against HLA-B35. The vast majority (approximately 75%) of the VA2S3J36 junctional regions obtained from two samples of PBL, isolated at a 9-yr interval, encode CDR3 identical or homologous to those of the functionally characterized HLA-B35 allospecific T cells. These data are most easily explained by a model of alloreactivity in which persistent or recurrent exposure to a foreign peptide/self-MHC complex led to the in vivo expansion and long-term maintenance of specific T cells that show fortuitous crossrecognition of an HLA-B35/peptide complex and dominate the alloresponse against HLA-B35.