Skip to Content
Merck
  • Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy.

Mechanism of Action of IL-7 and Its Potential Applications and Limitations in Cancer Immunotherapy.

International journal of molecular sciences (2015-05-09)
Jianbao Gao, Lintao Zhao, Yisong Y Wan, Bo Zhu
ABSTRACT

Interleukin-7 (IL-7) is a non-hematopoietic cell-derived cytokine with a central role in the adaptive immune system. It promotes lymphocyte development in the thymus and maintains survival of naive and memory T cell homeostasis in the periphery. Moreover, it is important for the organogenesis of lymph nodes (LN) and for the maintenance of activated T cells recruited into the secondary lymphoid organs (SLOs). The immune capacity of cancer patients is suppressed that is characterized by lower T cell counts, less effector immune cells infiltration, higher levels of exhausted effector cells and higher levels of immunosuppressive cytokines, such as transforming growth factor β (TGF-β). Recombinant human IL-7 (rhIL-7) is an ideal solution for the immune reconstitution of lymphopenia patients by promoting peripheral T cell expansion. Furthermore, it can antagonize the immunosuppressive network. In animal models, IL-7 has been proven to prolong the survival of tumor-bearing hosts. In this review, we will focus on the mechanism of action and applications of IL-7 in cancer immunotherapy and the potential restrictions for its usage.