Skip to Content
Merck
  • Augmentation of root gravitropism by hypocotyl curvature in Brassica rapa seedlings.

Augmentation of root gravitropism by hypocotyl curvature in Brassica rapa seedlings.

Plant science : an international journal of experimental plant biology (2019-06-18)
Chitra Ajala, Karl H Hasenstein
ABSTRACT

Main Conclusion Root gravitropism of primary roots is assisted by curvature of the hypocotyl base. Root gravitropism is typically described as the sequence of signal perception, signal processing, and response that causes differential elongation and the establishment of a new gravitropic set-point angle. We describe two components of the graviresponse of Brassica seedlings that comprise a primary curvature of the root tip and a later onset but stronger curvature that occurs at the base of the hypocotyl. This second curvature is preceded by straightening of the tip region but leads to the completion of the alignment of the root axis. Curvature in both regions require a minimum displacement of 20 deg. The rate of tip curvature is a function of root length. After horizontal reorientation, tip curvature of five mm long roots curved twice as fast as 10 mm long roots (33.6 ± 3.3 vs. 14.3 ± 1.5 deg hr-1). The onset of curvature at the hypocotyl base is correlated with root length, but the rate of this curvature is independent of seedling length. Decapping of roots prevented tip curvature but the curvature at base of hypocotyl was unaffected. Endodermal cells at the root shoot junction show numerous, large and sedimenting amyloplasts, which likely serve as gravity sensors (statoliths). The amyloplasts at the hypocotyl were 3-4 μm in diameter, similar in size to those in the root cap, and twice the size of starch grains in the cortical layers of hypocotyl or elsewhere in the root. These data indicate that the root shoot reorientation of young seedlings is not limited to the root tip but includes more than one gravitropically responsive region.